HEAT EXCHANGER TECHNOLOGY

The versatile, instant hot water, high pressure, hydraulic separator.

CASE STUDY

AIR APARTMENTS EASTWOOD, SA

Challenge

Air Apartments on Greenhill Road is one of Adelaide's premium residential apartment towers. Facilities include a gymnasium, 25m lap pool, spa and sauna, and family entertainment area.

The client wished to utilise the existing Raypak mechanical plant to provide domestic hot water from the basement with pressure requirements exceeding those of storage tanks.

A pair of Rheem Crossflow hot water delivery systems were manifolded with RT storage tanks providing segregation between domestic hot water and the mechanical heating system, high pressure zones capability, accurate temperature control, and connectivity to the building management system.

Hot Water Solution

Total hot water plant installed across the precinct included:

- 2 x Rheem Crossflow systems manifolded
- 3 x Rheem RT1000 stainless steel storage tanks

RHEEM CROSSFLOW®

SUITED TO COMMERCIAL APPLICATIONS, PARTICULARLY **MULTI-STOREY CONSTRUCTION**

HIGH PRESSURE

BMS CONNECTIVITY

WASTE HEAT RECOVERY

FOOTPRINT

ROOFTOP PENTHOUSE VS. ROOFTOP PLANT

High working pressure of 1400kPa, the result of its hydraulic separator design, means Crossflow can be located in the basement of tall buildings - leaving rooftop space available for more profitable allocation.

MORE POWER FOR THE SPACE

Variable speed pumps accurately match the required energy load to deliver tankless, on-demand hot water with exceptional temperature control.

Crossflow uses 25% of the space of an equivalent storage-based system.

LOW PRESSURE LOSS

Crossflow exhibits exceptionally low pressure drop, so there's minimal impact on building design.

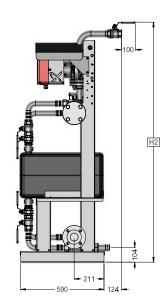
BUILT-IN REDUNDANCY

Designed with dual-head pump and twin heat exchangers that share the load, allowing isolation for maintenance, with no interruption to supply.

HIGHLY EFFICIENT HEAT EXCHANGE

Can be used with all heating types, solar, heat pump, gas, electric - as well as waste heat.


BMS AND SCADA CAPABILITY


Pump offers data transfer and monitoring capabilities to BMS or SCADA systems by an add-on CIM module suitable for Modbus, Bacnet and Lonworks.

MORE KEY FEATURES

- · Factory assembled and tested on a hot dip galvanized frame
- · All fittings and pipe work are 316L stainless steel
- Can be used as a hydraulic separator for solar, Co-gen and PP-R systems
- Grundfos Go remote APP Bluetooth enabled

*For full terms and conditions contact Rheem or visit www.rheem.com.au/warranty

MODEL	DIM 'H1'	DIM 'H2'
RD200D701	877	1522
RD400D701	930	1575
RD600D701	993	1638
RD800D701	1056	1701

TECHNICAL DATA

Model			RD200	RD400	RD600	RD800	
Nominal Capacity		kW	200	400	600	800	
	Primary Side (non-potable)						
	Inlet Temp	°C	80	80	80	80	
	Flow Rate	L/min	48	114	144	186	
Parameters for Naminal Canacity Pating	Pressure Drop	kPa	24	47	36	36	
Parameters for Nominal Capacity Rating	Secondary Side (potable)						
	Inlet/Outlet Temp	°C	15/65	15/65	15/65	15/65	
	Flow Rate	L/min	57	115	172	223	
	Pressure Drop	kPa	37	47	51	48	
Dimensions				1364 x 7			
Weight		kg	130	138	147	156	
Pipe Connections Primary Circuit	BSPF			RP1¼			
Pipe Connections Secondary Circuit				50mm Flange	Туре Е		
Max Operating Pressure Primary Circuit	kPa	1400²³					
Max Operating Pressure Secondary Circuit	kPa	1400 ²³					
Electrical Supply			230-240V 50/60Hz Hard Wired By Electrician				
Min Circuit Size	Amps	10					

²² The maximum working pressure of each side of the system will be governed by the lowest operating appliance connected to it. The potable side (secondary side) water pressure must be higher than the non potable side (primary side) pressure.

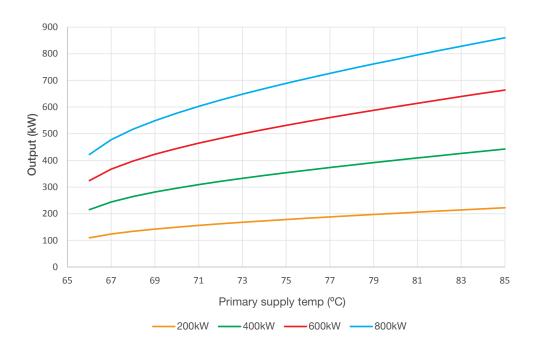
Cross Flow Delivery Skid Secondary Side Flow Rate for Varying Primary Supply Temperatures and Secondary Side Temperature Rise

200kW									
Primary Temp	90	85	80	75	70	65			
Output (kW)	270	215	200	190	160	100			
Temp Rise	Se	condar	y Side I	Flow Ra	ite (L/m	nin)			
65	60	47	44	42	35				
60	65	51	48	45	38	24			
55	70	56	52	50	42	26			
50	77	62	57	54	46	29			
45	86	68	64	61	51	32			
40	97	77	72	68	57	36			
35	111	88	82	78	66	41			

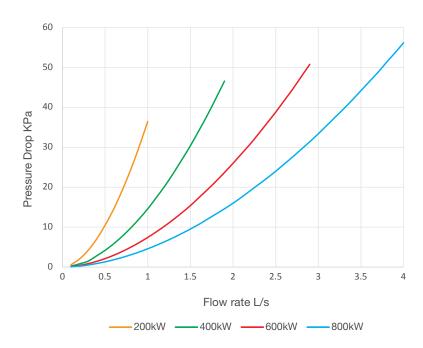
600kW									
Primary Temp	90	85	80	75	70	65			
Output (kW)	740	680	600	535	450	300			
Temp Rise	Se	econda	ry Side	Flow Ra	ate (L/n	nin)			
65	163	150	132	118	99				
60	177	162	143	128	108	72			
55	193	177	156	139	117	78			
50	212	195	172	153	129	86			
45	236	217	191	170	143	96			
40	265	244	215	192	161	108			
35	303	278	246	219	184	123			
40	265	244	215	192	161	10			

800kW										
Primary Temp	90	85	80	75	70	65				
Output (kW)	940	870	800	695	580	400				
Temp Rise	Se	condar	y Side F	low Ra	te (L/m	in)				
65	207	192	176	153	128					
60	225	208	191	166	139	96				
55	245	227	208	181	151	104				
50	269	249	229	199	166	115				
45	299	277	255	221	185	127				
40	337	312	287	249	208	143				
35	385	356	328	285	238	164				

400kW									
Primary Temp	90	85	80	75	70	65			
Output (kW)	500	450	400	365	300	200			
Temp Rise	Se	condar	y Side I	Flow Ra	ite (L/m	iin)			
65	110	99	88	80	66				
60	119	108	96	87	72	48			
55	130	117	104	95	78	52			
50	143	129	115	105	86	57			
45	159	143	127	116	96	64			
40	179	161	143	131	108	72			
35	205	184	164	149	123	82			


2 x 600kW									
Primary Temp	90	85	80	75	70	65			
Output (kW)	1480	1360	1200	1070	900	600			
Temp Rise	Se	econda	ry Side	Flow Ra	ate (L/n	nin)			
65	326	300	265	236	198				
60	354	325	287	256	215	143			
55	386	354	313	279	235	156			
50	424	390	344	307	258	172			
45	471	433	382	341	287	191			
40	530	487	430	383	323	215			
35	606	557	491	438	369	246			

2 x 800kW										
Primary Temp	90	85	80	75	70	65				
Output (kW)	1880	1740	1600	1390	1160	800				
Temp Rise	Se	condar	y Side F	Flow Ra	te (L/m	in)				
65	415	384	353	307	256					
60	449	416	382	332	277	191				
55	490	453	417	362	302	208				
50	539	499	459	398	333	229				
45	599	554	510	443	369	255				
40	674	624	573	498	416	287				
35	770	713	655	569	475	328				



TECHNICAL DATA

Rheem Crossflow Maximum Output (Tin15°C-Tin65°C) vs. Primary supply temp

Rheem Crossflow Secondary Side Pressure Drop vs. Flow Rate

BRAZED PLATE HEAT EXCHANGER

SUITED TO CO-GEN AND TRI-GEN PLANTS, PROCESS HEATING, AND PRESSURE REDUCTION STATIONS

STAINLESS

EASY TO MAINTAIN

WASTE HEAT RECOVERY

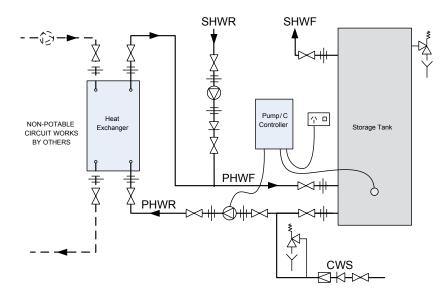
MINIMUM PRESSURE DROP

The most versatile heat exchanger available.

IDEAL FOR CUSTOM ENGINEERING DESIGNS

316L stainless steel, single wall, brazed plate heat exchangers can be bolted together when more capacity is needed. Suits specialist applications, where high temperature and high pressure are needed.

EASY TO INSPECT AND MAINTAIN


Unlike other products that use internal coils, the external heat exchanger is easily isolated for repairs and maintenance.

MINIMAL PRESSURE LOSS **ENERGY TRANSFER**

Parallel brazed plate construction means increased flow without the pressure drop and high heat transfer efficiency in a compact package.

Contact Rheem for assistance confirming the rated capacity of heat exchangers taking into consideration site specific requirements.

*For full terms and conditions contact Rheem or visit www.rheem.com.au/warranty

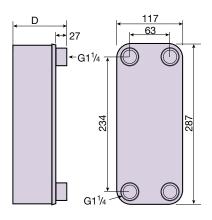
Legend

CWS: cold water supply PHWR: primary hot water return PHWF: primary hot water flow SHWS secondary hot water supply SHWR secondary hot water return

Pressure limiting valve

Union

Circulator or pump


TECHNICAL DATA

DIMENSIONS ANI	DIMENSIONS AND TECHNICAL DATA TABLE - RHEEM HEAT EXCHANGER								
Part Number			0191750	0191751	0191752	0191753	0191754		
Nominal Rating			kW	50	100	150	200	250	
	Non Potable Side	Inlet/Outlet Temp	°C	80/60	80/60	80/60	80/60	80/60	
or see		Flow Rate	L/sec	0.61	1.22	1.83	2.44	3.05	
Parameters for Nominal Rating		Pressure Drop	kPa	2.65	3.74	5.00	6.98	9.83	
arame	Potable Side	Inlet/Outlet Temp	°C	45/65	45/65	45/65	45/65	45/65	
4 2		Flow Rate	L/sec	0.61	1.21	1.82	2.43	3.03	
		Pressure Drop	kPa	2.39	3.59	4.91	6.91	9.79	
Dimensions		Depth (D)	mm	104	160	221	277	333	
Weight			kg	6	9	12	15	18	
Operating Pressure			kPa 3000 ¹						
Electrical Supply (Electrical Supply (Temperature Controller)				230-240V 50/60Hz Hard wired by Electrician				

¹ The maximum working pressure of each side of the system will be governed by the lowest operating appliance connected to it. The potable side (secondary side) water pressure must be higher than the non potable side (primary side) pressure.

POTABLE SIDE PUMP AND PIPE SIZING									
Heat Exchanger Model	Qty In Parallel	Output (kW)	Design Flow Rate	Minimum Potable Primary F & R Pipe Size (mm)	Pump Model / Speed Setting				
0191750	1	50	0.61	32	UPS20-60N/3				
0191750	2	100	1.22	40	UPS32-80N/3				
0191751	1	100	1.21	40	UPS32-80N/3				
0191751	2	200	2.42	50	UPS40-60/2FB / 2				
0191752	1	150	1.82	50	UPS32-80N/3				
0191752	2	300	3.64	65	UPS40-60/2FB / 3				
0191753	1	200	2.43	50	UPS40-60/2FB / 3				
0191753	2	400	4.86	80	UPS50-120FB / 1				
0191754	1	250	3.03	65	UPS40-60/2FB / 3				
0191754	2	500	6.06	80	UPS50-120FB/3				

NOTE: Pipe sizing, pump selection and installation of the NON-POTABLE circuit is not covered by Rheem. Pipe and pump sizing is for potable water side only between the heat exchanger and storage tank/s and is based on 25m TOTAL pipe run and $20 \times 90^\circ$ bends @1.2m/s. If the piping is beyond this scope, please contact Rheem for assistance.

