HEAT EXCHANGER TECHNOLOGY

The versatile, high pressure hydraulic separator.

At Givaudan, we focus on maintaining the highest food health and safety standards possible. This necessitated a comprehensive upgrade to our existing hot water plant. Rheem met the challenge by providing a smart total solution incorporating their innovative Crossflow Heat Exchange delivery skid.

Wayne Parry, Engineering Manager (Oceania)

CASE STUDY

PULLMAN HOTEL

Adelaide, SA

Challenge

Pullman Hotel is Adelaide's newest 5-star hotel in the heart of the Central Business District offering 308 rooms and suites.

Hot Water Solution

To ensure instant hot water for this multistorey construction, with an incoming supply pressure of 850kPa, Rheem heat exchanger technology was installed in March 2018.

The system consists of 3 x Raypak water heaters providing mechanical heating feeding 3x Rheem storage 340L as buffer supplying 2x Rheem Crossflow to meet the peak demand at high supply pressure.

RHEEM CROSSFLOW

SUITED TO COMMERCIAL APPLICATIONS, PARTICULARLY MULTI-STOREY CONSTRUCTION

HIGH PRESSURE

Tankless, high pressure, instant hot water.

Rooftop penthouse vs. rooftop plant

High working pressure of 1400kPa, the result of its hydraulic separator design, means Crossflow™ can be located in the basement of tall buildings - leaving rooftop space available for more profitable allocation.

More power for the space

Variable speed pumps accurately match the required energy load to deliver tankless, on-demand hot water with exceptional temperature control.

Crossflow uses 25% of the space of an equivalent storage-based system.

Low pressure loss

Crossflow exhibits exceptionally low pressure drop, so there's minimal impact on building design.

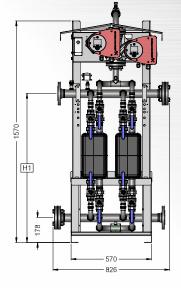
Built-in redundancy

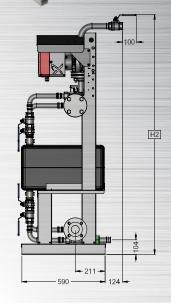
Designed with dual-head pump and twin heatexchangers that share the load, allowing isolation for maintenance, with no interruption to supply.

Highly efficient heat exchange

Can be used with all heating types, solar, heat pump, gas, electric - as well as waste heat.

BMS and **SCADA** capability


Pump offers data transfer and monitoring capabilities to BMS or SCADA systems by an add-on CIM module suitable for Modbus, Bacnet and Lonworks.


More key features

- Factory assembled and tested on a hot dip galvanized frame
- All fittings and pipe work are 316L stainless steel
- Can be used as a hydraulic separator for solar, Co-gen and PP-R systems
- Grundfos Go remote APP Bluetooth enabled

* For full terms and conditions contact Rheem or visit www.rheem.com.au/warranty

MODEL	DIM 'H1'	DIM 'H2'
RD200D701	877	1522
RD400D701	930	1575
RD600D701	993	1638
RD800D701	1056	1701
RD800D701	1056	1701

TECHNICAL DATA

/lodel			RD200	RD400	RD600	RD800			
lominal Capacity		kW	200	400	600	800			
	Primary Side (non-potable	!)							
	Inlet Temp	OC	80	80	80	80			
Parameters for Nominal Capacity Rating	Flow Rate	L/min	48	114	144	186			
	Pressure Drop	kPa	24	47	36	36			
	Secondary Side (potable)	Secondary Side (potable)							
	Inlet/Outlet Temp	OC	15/65	15/65	15/65	15/65			
	Flow Rate	L/min	57	115	172	223			
	Pressure Drop	kPa	37	47	51	48			
Dimensions	HxWxD	mm	1364 x 761 x 700						
Veight		kg	130	138	147	156			
ripe Connections Primary Circuit	BSPF			RP11/4					
ripe Connections Secondary Circuit				50mm Flange	Туре Е				
Max Operating Pressure Primary Circuit	kPa	kPa 1400 ²³							
Max Operating Pressure Secondary Circuit	kPa			140023					
lectrical Supply		230-240V 50/60Hz Hard Wired By Electrician							
/lin Circuit Size	Amps			10					

²³ The maximum working pressure of each side of the system will be governed by the lowest operating appliance connected to it. The potable side (secondary side) water pressure must be higher than the non potable side (primary side) pressure.

Temp Rise

65

60

55

50

45

Cross Flow Delivery Skid Secondary Side Flow Rate for Varying Primary Supply Temperatures and Secondary Side Temperature Rise

		200k	W			
Primary Temp	90	85	80	75	70	65
Output (kW)	270	215	200	190	160	100
Temp Rise	Sec	ondary	Side F	low Ra	ate (L/r	nin)
65	60	47	44	42	35	
60	65	51	48	45	38	24
55	70	56	52	50	42	26
50	77	62	57	54	46	29
45	86	68	64	61	51	32
40	97	77	72	68	57	36
35	111	88	82	78	66	41
· · · · · · · · · · · · · · · · · · ·		6001	(W T			

Primary Temp 90 85 80 75 70 65

Output (kW) 740 680 600 535 450 300

		400k	W			
Primary Temp	90	85	80	75	70	65
Output (kW)	500	450	400	365	300	200
Temp Rise	Sec	ondary	/ Side F	Flow Ra	ate (L/r	nin)
65	110	99	88	80	66	
60	119	108	96	87	72	48
55	130	117	104	95	78	52
50	143	129	115	105	86	57
45	159	143	127	116	96	64
40	179	161	143	131	108	72
35	205	184	164	149	123	82

800kW

Primary Temp 90 85 80 75 70 65

Output (kW) 940 870 800 695 580 400

249

225 208 191 166 139

269

Secondary Side Flow Rate (L/min)

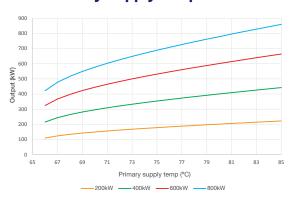
245 227 208 181 151 104

115

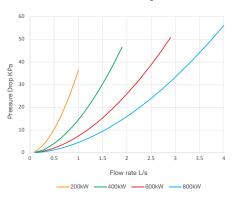
185 127

166

207 192 176 153 128


229 199

299 277 255 221


Temp Rise	Sec	ondary	/ Side I	Flow Ra	ate (L/r	nin)
65	163	150	132	118	99	
60	177	162	143	128	108	72
55	193	177	156	139	117	78
50	212	195	172	153	129	86
45	236	217	191	170	143	96
40	265	244	215	192	161	108
35	303	278	246	219	184	123
		2 x 60	0kW			
Primary Temp	90	85	80	75	70	65
Output (kW)	1480	1360	1200	1070	900	600
Temp Rise	Sec	ondary	/ Side I	Flow Ra	ate (L/r	nin)
65	326	300	265	236	198	
60	354	325	287	256	215	143
55	386	354	313	279	235	156
50	424	390	344	307	258	172
45	471	433	382	341	287	191
40	530	487	430	383	323	215
35	606	557	491	438	369	246

40	337	312	287	249	208	143
35	385	356	328	285	238	164
		2 x 80	OkW			
Primary Temp	90	85	80	75	70	65
Output (kW)	1880	1740	1600	1390	1160	800
Temp Rise	Sec	ondary	Side F	low Ra	ate (L/r	nin)
65	415	384	353	307	256	
60	449	416	382	332	277	191
55	490	453	417	362	302	208
50	539	499	459	398	333	229
45	599	554	510	443	369	255
40	674	624	573	498	416	287
35	770	713	655	569	475	328

Rheem Crossflow Maximum Output (T_{in}15°C-T_{in}65°C) vs. Primary supply temp

Rheem Crossflow Secondary Side Pressure Drop vs. Flow Rate

BRAZED PLATE HEAT EXCHANGER

SUITED TO CO-GEN AND TRI-GEN PLANTS, PROCESS HEATING, AND PRESSURE REDUCTION STATIONS

STAINLESS STEEL

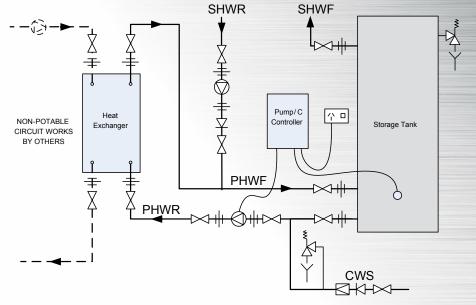
The most versatile heat exchanger available.

Ideal for custom engineering designs

316L stainless steel, single wall, brazed plate heat exchangers can be bolted together when more capacity is needed. Suits specialist applications, where high temperature and high pressure are needed.

Easy to inspect and maintain

Unlike other products that use internal coils, the external heat exchanger is easily isolated for repairs and maintenance.


Minimal pressure loss energy transfer

Parallel brazed plate construction means increased flow without the pressure drop and high heat transfer efficiency in a compact package.

* For full terms and conditions contact Rheem or visit www.rheem.com.au/warranty

Legend

CWS: cold water supply PHWR: primary hot water return PHWF: primary hot water flow SHWS secondary hot water supply SHWR secondary hot water return

FCV TPR valve

Tundish

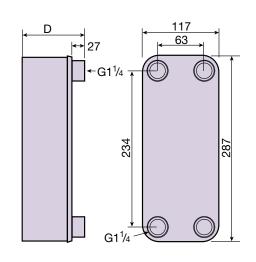
Isolation valve

И Non return valve

Pressure limiting valve

Union

0 Circulator or pump



TECHNICAL DATA

Part Numb	er				0191750	0191751	0191752	0191753	0191754
Nominal Ra	ating			kW	50	100	150	200	250
		Non Potable Side	Inlet/Outlet Temp	°C	80/60	80/60	80/60	80/60	80/60
or	ng		Flow Rate	L/sec	0.61	1.22	1.83	2.44	3.05
Parameters for	Nominal Rating		Pressure Drop	kPa	2.65	3.74	5.00	6.98	9.83
rame	mina	Potable Side	Inlet/Outlet Temp	°C	45/65	45/65	45/65	45/65	45/65
Ра	S		Flow Rate	L/sec	0.61	1.21	1.82	2.43	3.03
		Pressure Drop	kPa	2.39	3.59	4.91	6.91	9.79	
Dimensions Depth (D)		Depth (D)	mm	104	160	221	277	333	
Weight			kg	6	9	12	15	18	
Operating Pressure				kPa			300024		
Electrical Supply (Temperature Controller)					230-240\	230-240V 50/60Hz Hard Wired By Electrician			

²⁴ The maximum working pressure of each side of the system will be governed by the lowest operating appliance connected to it. The potable side (secondary side) water pressure must be higher than the non potable side (primary side) pressure.

POTABLE SIDE PUM	P AND PIPE	SIZING			
Heat Exchanger Model	Qty In Parallel	Output (kW)	Design Flow Rate	Minimum Potable Primary F & R Pipe Size (mm)	Pump Model / Speed Setting
0191750	1	50	0.61	32	UPS20-60N / 3
0191750	2	100	1.22	40	UPS32-80N / 3
0191751	1	100	1.21	40	UPS32-80N / 3
0191751	2	200	2.42	50	UPS40-60/2FB / 2
0191752	1	150	1.82	50	UPS32-80N / 3
0191752	2	300	3.64	65	UPS40-60/2FB / 3
0191753	1	200	2.43	50	UPS40-60/2FB / 3
0191753	2	400	4.86	80	UPS50-120FB / 1
0191754	1	250	3.03	65	UPS40-60/2FB / 3
0191754	2	500	6.06	80	UPS50-120FB / 3

NOTE: Pipe sizing, pump selection and installation of the NON-POTABLE circuit is not covered by Rheem. Pipe and pump sizing is for potable water side only between the heat exchanger and storage tank/s and is based on 25m TOTAL pipe run and 20 x 90° bends @1.2m/s. If the piping is beyond this scope, please contact Rheem for assistance.